Sampling-based algorithms for optimal path planning problems
نویسنده
چکیده
Sampling-based motion planning received increasing attention during the last decade. In particular, some of the leading paradigms, such the Probabilistic RoadMap (PRM) and the Rapidly-exploring Random Tree (RRT) algorithms, have been demonstrated on several robotic platforms, and found applications well outside the robotics domain. However, a large portion of this research effort has been limited to the classical feasible path planning problem, which asks for finding a path that starts from an initial configuration and reaches a goal configuration while avoiding collision with obstacles. The main contribution of this dissertation is a novel class of algorithms that extend the application domain of sampling-based methods to two new directions: optimal path planning and path planning with complex task specifications. Regarding the optimal path planning problem, we first show that the existing algorithms either lack asymptotic optimality, i.e., almost-sure convergence to optimal solutions, or they lack computational efficiency: on one hand, neither the RRT nor the k-nearest PRM (for any fixed k) is asymptotically optimal; on the other hand, the simple PRM algorithm, where the connections are sought within fixed radius balls, is not computationally as efficient as the RRT or the efficient PRM variants. Subsequently, we propose two novel algorithms, called PRM∗ and RRT∗, both of which guarantee asymptotic optimality without sacrificing computational efficiency. In fact, the proposed algorithms and the most efficient existing algorithms, such as the RRT, have the same asymptotic computational complexity. Regarding the path planning problem with complex task specifications, we propose an incremental sampling-based algorithm that is provably correct and probabilistically complete, i.e., it generates a correct-by-design path that satisfies a given deterministic μ-calculus specification, when such a path exists, with probability approaching to one as the number of samples approaches infinity. For this purpose, we develop two key ingredients. First, we propose an incremental sampling-based algorithm, called the RRG, that generates a representative set of paths in the form of a graph, with guaranteed almost-sure convergence towards feasible paths. Second, we propose an incremental local model-checking algorithm for the deterministic μ-calculus. Moreover, with the help of these tools and the ideas behind the RRT∗, we construct algorithms that also guarantee almost sure convergence to optimal solutions.
منابع مشابه
Efficient Sampling-Based Approaches to Optimal Path Planning in Complex Cost Spaces
Sampling-based algorithms for path planning have achieved great success during the last 15 years, thanks to their ability to efficiently solve complex high-dimensional problems. However, standard versions of these algorithms cannot guarantee optimality or even high-quality for the produced paths. In recent years, variants of these methods, taking cost criteria into account during the exploratio...
متن کاملStudy of Evolutionary and Swarm Intelligent Techniques for Soccer Robot Path Planning
Finding an optimal path for a robot in a soccer field involves different parameters such as the positions of the robot, positions of the obstacles, etc. Due to simplicity and smoothness of Ferguson Spline, it has been employed for path planning between arbitrary points on the field in many research teams. In order to optimize the parameters of Ferguson Spline some evolutionary or intelligent al...
متن کاملSampling-based algorithms for optimal motion planning
During the last decade, sampling-based path planning algorithms, such as Probabilistic RoadMaps (PRM) and Rapidly-exploring Random Trees (RRT), have been shown to work well in practice and possess theoretical guarantees such as probabilistic completeness. However, little effort has been devoted to the formal analysis of the quality of the solution returned by such algorithms, e.g., as a functio...
متن کاملOptimal Path Planning using RRT* based Approaches: A Survey and Future Directions
Optimal path planning refers to find the collision free, shortest, and smooth route between start and goal positions. This task is essential in many robotic applications such as autonomous car, surveillance operations, agricultural robots, planetary and space exploration missions. Rapidly-exploring Random Tree Star (RRT*) is a renowned sampling based planning approach. It has gained immense pop...
متن کاملInformed Asymptotically Optimal Anytime Search
Path planning in robotics often requires finding high-quality solutions to continuously valued and/or high-dimensional problems. These problems are challenging and most planning algorithms instead solve simplified approximations. Popular approximations include graphs and random samples, as respectively used by informed graph-based searches and anytime sampling-based planners. Informed graph-bas...
متن کامل